Improved elimination of motion artifacts from a photoplethysmographic signal using a Kalman smoother with simultaneous accelerometry.

نویسندگان

  • Boreom Lee
  • Jonghee Han
  • Hyun Jae Baek
  • Jae Hyuk Shin
  • Kwang Suk Park
  • Won Jin Yi
چکیده

A photoplethysmography (PPG) signal provides very useful information about a subject's hemodynamic status in a hospital or ubiquitous environment. However, PPG is very vulnerable to motion artifacts, which can significantly distort the information belonging to the PPG signal itself. Thus, the reduction of the effects of motion artifacts is an important issue when monitoring the cardiovascular system by PPG. There have been many adaptive techniques to reduce motion artifacts from PPG signals. In the present study, we compared a method based on the fixed-interval Kalman smoother with the usual adaptive filtering algorithms, e.g. the normalized least mean squares, recursive least squares and the conventional Kalman filter. We found that the fixed-interval Kalman smoother reduced motion artifacts from the PPG signal most effectively. Therefore, the use of the fixed-interval Kalman smoother can reduce motion artifacts in PPG, thus providing the most reliable information that can be deduced from the reconstructed PPG signals.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

New adaptive interpolation schemes for efficient meshbased motion estimation

Motion estimation and compensation is an essential part of existing video coding systems. The mesh-based motion estimation (MME) produces smoother motion field, better subjective quality (free from blocking artifacts), and higher peak signal-to-noise ratio (PSNR) in many cases, especially at low bitrate video communications, compared to the conventional block matching algorithm (BMA). Howev...

متن کامل

Implementing a Smart Method to Eliminate Artifacts of Vital Signals

Background: Electroencephalography (EEG) has vital and significant applications in different medical fields and is used for the primary evaluation of neurological disorders. Hence, having easy access to suitable and useful signal is very important. Artifacts are undesirable confusions which are generally originated from inevitable human activities such as heartbeat, blinking of eyes and facial ...

متن کامل

A time-frequency domain approach of heart rate estimation from photoplethysmographic (PPG) signal

ObjectiveHeart rate monitoring using wrist type Photoplethysmographic (PPG) signals is getting popularity because of construction simplicity and low cost of wearable devices. The task becomes very difficult due to the presence of various motion artifacts. The objective is to develop algorithms to reduce the effect of motion artifacts and thus obtain accurate heart rate estimation. MethodsPropos...

متن کامل

Estimating joint kinematics from skin motion observation: modelling and validation.

Modelling of soft tissue motion is required in many areas, such as computer animation, surgical simulation, 3D motion analysis and gait analysis. In this paper, we will focus on the use of modelling of skin deformation during 3D motion analysis. The most frequently used method in 3D human motion analysis involves placing markers on the skin of the analysed segment which is composed of the rigid...

متن کامل

Reducing the respiratory motion artifacts in PET cardiology: A simulation study

  Introduction: There are several technical features that make PET an ideal device for the noninvasive evaluation of cardiac physiology. Organ motion due to respiration is a major challenge in diagnostic imaging, especially in cardiac PET imaging. These motions reduce image quality by spreading the radiotracer activity over an increased volume, distorting apparent les...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physiological measurement

دوره 31 12  شماره 

صفحات  -

تاریخ انتشار 2010